EnRi et « Effets de la modulation sur les centrales nucléaires »

29 / 06 / 2025

EnRi et « Effets de la modulation sur les centrales nucléaires »

Avis de PNC-France, par Jean-Pierre PERVES, Groupe d’experts de PNC-France

Notre mix électrique évolue à un rythme que ses promoteurs veulent si excessif qu’un retour en arrière deviendrait impossible : notre puissance installée intermittente (EnRi) est aujourd’hui de 51 GW (26,5 solaire et 24,5 éolien), à un niveau qui rejoindra bientôt celui du nucléaire. Elle n’était en 2016 que de 16 GW, mais les objectifs de la PPE3 que le gouvernement semble vouloir conserver retiennent 91 GW en 2030 et de 123 à 153 GW en 2035.

Le faible rendement moyen des EnRi (environ 19/20 %), conjugué à une variabilité considérable et non maîtrisée de la production, va peser de manière de plus en plus considérable sur la stabilité du réseau. Compte-tenu des privilèges qui leurs sont alloués, avec une quasi-priorité d’accès au réseau, elles bénéficient d’un avantage compétitif sur tous les autres moyens de production, et en France sur le nucléaire en particulier. La figure ci-dessous présente les contributions à la consommation des EnRi lors de 2 semaines estivales de 2016 et 2025.

Deux phénomènes sont évidents : une variabilité très importante de la production nucléaire se développe (il doit s’effacer), et un assaut des EnRi, ici surtout du solaire.  On voit clairement que la production EnRi est déjà très excessive puisqu’elle-même s’efface en milieu de journée. On peut bien sûr s’interroger sur la pertinence d’une PPE3 qui conduit à doublonner à grand coût notre mix, mais PNC-France estime de plus que ses conséquences techniques et opérationnelles sur le réseau français restent mal évaluées et que le pilier de notre production, le nucléaire, sera nécessairement fragilisé.

L’article joint qu’Yves Bréchet, membre de l’Académie des Sciences,  nous autorise à publier « Effets de la modulation sur les centrales nucléaires », démontre qu’au rôle essentiel du nucléaire, le suivi de la consommation et le suivi saisonnier, va se substituer de plus en plus l’obligation de compensation de la variabilité des EnRi, qui n’est pas de même nature et dont l’amplitude va devenir considérable. Il suffit de se représenter la figure de droite en 2035 avec des EnRi triplées!

Cette question, et le blackout ibérique du 28 avril 2025,  commencent à sérieusement inquiéter RTE qui, dans une réunion de concertation du 23 juin 2025, propose à ses parties prenantes une évolution des moyens à mettre en œuvre, du mode de fonctionnement du réseau et des règles à lui appliquer pour faire face à l’intense variabilité de la production qui s’annonce. Mais RTE se garde de toute remise en cause de l’objectif de triplement des EnRi et se satisfait de l’engagement de dépenses considérables pour essayer de sauver une robustesse du réseau déjà dégradée. Et si on se projette plus largement, que ferons-nous des invasions des productions solaires de nos voisins allemands (360 GW en 2030), espagnols et britanniques entre autres.

Les contraintes imposées au parc électronucléaire par cette mission de « modulation », autrement plus exigeante que le « suivi de charge », dans un contexte de multiplication annoncé des Énergies Intermittentes, ne sont pas neutres. PRUDENCE !

 

 

Illustration de Nicolas WAECKEL

Effets de la modulation sur les centrales nucléaires

Yves Bréchet, de l’Académie des Sciences

Voilà l’état de mes réflexions sur les effets de la modulation… (et la raison pour laquelle le rapport de Jean Casabianca, Inspecteur Général de la Sûreté Nucléaire, me semble devoir être attentivement lu !). J’ai partagé cette réflexion avec quelques personnes spécialistes de l’opération des centrales et des combustibles. Le message final est de ne pas tomber dans le catastrophisme, ni de prétendre qu’il n’y a pas de problème. La décision de moduler la production nucléaire pour s’adapter aux fluctuations induites par le développement massif des ENR mérite d’être instruite sérieusement et on ne saurait se contenter de slogans pour prendre des décisions importantes.

 

Il y a deux questions à aborder : les endommagements induits, et les difficultés d’exploitation accrues. Il est important de distinguer les suivis de charge, de faible amplitude et grande période, et les modulations de forte amplitude, à fréquence rapide mais pouvant induire un fonctionnement à puissance réduite pendant une longue période. La confusion de ces différents aspects conduit à un catastrophisme ou un irénisme tous les deux non justifiés.

 

Les endommagements induits :

 

Il y a dans les centrales trois types de composants : les composants consommables, le composants remplaçables et les composants non remplaçables :

 

    1. La cuve est le composant non remplaçable qui fixe la durée de vie des réacteurs. Le phénomène qui limite sa durée de vie est le durcissement sous irradiation de l’acier de cuve, qui conduit à une réduction progressive de la température de transition ductile/fragile et qui fait que, au-delà d’une certaine fluence, le matériau n’a plus la résilience requise en cas d’accident. Bonne nouvelle, les aciers bainitiques qui constituent la cuve vieillissent moins vite qu’initialement prévu. Les évolutions de résilience sont suivies régulièrement, c’est ce qui permet de penser qu’un réacteur peut aller au-delà de 50 ans, 60 ans, 80 ans en adoptant des gestions faibles fluences…

    1. Les composants consommables sont essentiellement le combustible, la gaine du combustible et les éléments de l’assemblage. Ce qui limite la durée de vie du combustible, c’est la corrosion de la gaine qui fait qu’elle ne peut pas indéfiniment jouer son rôle de barrière[1]. C’est pour cela qu’on change parfois le combustible avant qu’il n’ait été totalement consommé. De façon générale, le combustible est changé parce que la réactivité n’est plus suffisante : l’enrichissement de départ a été choisi pour ça et les caractéristiques du crayon combustible dans les assemblages (pression initiale dans le crayon, jeu pastille-gaine, choix du type de pastilles et de gainage, conception d’assemblage minimisant les risques de percement de la gaine par vibration usure des crayons) ont été adaptées pour que les phénomènes limitant induits par l’irradiation ne surviennent pas avant que le combustible ait été consommé de façon optimale.

    1. Les composants remplaçables sont les circuits de refroidissement, les internes de la cuve et les générateurs de vapeur. Les internes de cuves sont limités par la corrosion sous contrainte assistée par l’irradiation, les générateurs de vapeur par le colmatage et la corrosion, les circuits de refroidissement par la corrosion et la fatigue.

 

Une fois comprise cette classification, on peut comprendre les effets escomptés du fonctionnement non stationnaire d’un réacteur, c’est à dire le suivi de charge (oscillations de longue périodes) et la modulation (oscillations beaucoup plus rapides et d’amplitude plus grande pour compenser les fluctuations de production induites par exemple par les sources intermittentes).

 

Aucune de ces fluctuations ne va sérieusement modifier les effets d’irradiation de la cuve, et on n’aura pas de diminution de la durée de vie des réacteurs de ce fait, ni un risque de sûreté induit par les fluctuations de fonctionnement.

 

De même, les composants consommables ne seront probablement pas directement affectés : on ne s’attend pas à ce que la thermique de l’eau dans la cuve soit modifiée de façon majeure et la dose cumulée d’irradiation (à l’origine de l’augmentation de la pression interne des crayons combustible liée aux gaz de fission) ne sera pas non plus affectée : on ne s’attend donc pas à ce que les fluctuations de fonctionnement modifient drastiquement la durée d’utilisation du combustible (en termes d’énergie produite). Cela dit, les variations de puissance ont un effet sur les contraintes générées par la pastille sur la gaine (interaction mécanique pastille-gaine). Pour éviter un risque de percement de la gaine par interaction pastille-gaine (IPG) lors des fluctuations de puissance, un dimensionnement spécifique du cœur a été mis en œuvre en France, dès les années 80, induisant des contraintes sur le pilotage des tranches. Nous avons ainsi acquis une expérience technique unique, autorisant des variations de puissance que le monde entier nous envie.

 

En revanche, les fluctuations de puissance vont changer les conditions thermiques des circuits de refroidissement et des générateurs de vapeur. Si les fluctuations sont lentes (suivi de charge), l’expérience montre que les contraintes thermiques sont faibles et l’effet dégradant limité. Si les fluctuations thermiques sont rapides, les gradients de température peuvent être importants et induire des contraintes conduisant à de la fatigue thermomécanique et à de la fatigue – corrosion. C’est à mon avis l’effet majeur attendu à la suite d’une modulation trop rapide. Une situation analogue est rencontrée dans les zones de mélange froid/chaud qui ont conduit à du faïençage thermique des tuyaux.

 

En résumé, en termes d’endommagements, le suivi de charge devrait être assez inoffensif (le temps de mise en équilibre du champ thermique est faible devant le temps caractéristique d’évolution des conditions aux limites), cependant, la modulation peut affecter la durée de vie des composants remplaçables. Ce qui signifie non pas un risque de sûreté, mais un allongement des périodes d’arrêt pour remplacer les composants remplaçables.

 

Pour aller plus loin dans cette évaluation il faudrait calculer (avec des outils de calcul thermohydrauliques) les fluctuations de température induites par une fluctuation de puissance extraite du réacteur. Ensuite il faudrait calculer (dans un régime élastique) les amplitudes de contrainte en résultant et, enfin, faire des essais de fatigue thermomécaniques dans ces conditions, sur éprouvettes immergées, et mesurer les temps d’apparition de fissures de fatigue[2].

 

Je ne pense pas que de telles études aient été faites dans les conditions de modulation, car pour faire fonctionner un réacteur en régime de modulation, il faut vraiment avoir de bonnes raisons… Je pense que de telles études seraient utiles pour quantifier les dommages potentiellement induits, les périodes d’arrêt de maintenance qui en résulteraient, et les coûts afférents. Mais tout cela suppose qu’on aille au-delà d’un commode « circulez, il n’y a rien à voir » …

 

Pour ce qui est des dispositifs associés aux centrales, les turbines, les alternateurs, qui n’ont rien de spécifiquement nucléaire, le fonctionnement non stationnaire ne peut qu’endommager ces dispositifs, mais il est difficile d’en estimer a priori l’ampleur en l’absence de retour d’expérience.

 

Les difficultés potentielles d’exploitation

 

Au-delà des endommagements possibles, il est probable que la modulation rende plus difficile l’opération des centrales, ce qui n’est pas une bonne nouvelle.

    1. D’une part les principales variations de température en interne de la cuve, concernent celles de la pastille combustible et de la gaine lesquelles n’évoluent pas de la même façon, la première étant un composé fritté, la seconde étant un métal. C’est la question de l’interaction pastille – gaine (IPG) qui, en générant des contraintes dans la gaine, peut conduire à une fissure de la première barrière. Comme la taille du parc français a imposé dès le départ de faire du suivi de charge, cette problématique a été étudiée dès les années 80s en réalisant de nombreuses rampes de puissance dans des réacteurs expérimentaux. Sur la base des résultats obtenus, des limites de variation de puissance ont été imposées aux opérateurs des tranches en suivi de charge. Cela a conduit à réduire le domaine de fonctionnement de ces tranches par rapport à une tranche fonctionnant en base (sans variation de charge). Les cas les plus problématiques sont ceux impliquant un fonctionnement prolongé à faible puissance (de l’ordre de 8 à 30 jours) car il nécessite des précautions particulières lors de la remontée en puissance. Il faut simplement se rappeler que les réacteurs de type REP (réacteurs à eau sous pression) ont été conçus pour fonctionner en base c’est à dire sans faire varier la charge pendant toute la campagne d’irradiation. Pour pallier le risque IPG sur le combustible, le constructeur Westinghouse avait imposé une cinétique de montée en charge limitée, que nous avons pu relaxer grâce aux études évoquées ci-dessus.

    1. D’autre part toute variation de charge nécessite d’ajuster la concentration en bore afin de compenser l’effet des neutrons retardés (le Xénon en particulier) et ce, au cours des 7-8 heures qui suivent la variation de charge (certes les grappes grises permettent de modifier la puissance du réacteur en premier lieu, mais c’est le bore qui ajustera la réactivité ensuite). Ceci conduit à des productions d’effluents proportionnellement à l’amplitude et la vitesse de variation de charge ainsi qu’à l’avancement dans le cycle d’irradiation (la concentration en bore diminue au fur et à mesure de l’avancement dans le cycle et nécessite donc plus de dilution / borication pour une même variation de puissance). La gestion de ces effluents complique l’exploitation et augmente le volume des rejets, ce ne sont pas des effets à écarter d’un revers de main !

    1. Enfin, le suivi de charge massif imposé à certaines tranches met en tension les équipes chargées de la régulation du groupe turbo-alternateur de la partie non-nucléaire, augmentant ainsi les impacts Sociaux-Organisationnels et Humains (SOH). Ce point a été souligné par l’IGSNR (Inspection Générale de la Sûreté Nucléaire) dans son dernier rapport

 

En résumé

 

Les caractéristiques en amplitude et en fréquence du suivi de charge et des modulations rendent pour le moins hasardeuses les généralisations sans validation de l’expérience du suivi de charge au cas de la modulation.

 

Il est certain que la mise en place des modulations rend plus délicate l’exploitation des centrales, sans pour autant présenter de problèmes de sûreté ou de réduction de la durée de vie des réacteurs

 

Les modulations ne sont pas neutres vis-à-vis de l’utilisation du combustible : à titre d’exemple, le suivi de charge est suspendu dans une tranche contenant des crayons combustibles endommagés.

 

Il est probable que les modulations génèrent des endommagements qui dégraderont la disponibilité du parc, et la question doit être quantifiée, ne serait-ce que pour estimer les surcoûts d’exploitation.

 

Il est imprudent de prétendre, avant que ces études n’aient été faites, que la modulation du fonctionnement des centrales soit une stratégie industriellement viable pour contrebalancer les effets de l’intermittence induite par une pénétration fortement accrue des EnRi.

 

Retour sur la situation actuelle et les études nécessaires

 

Actuellement, ce qui est techniquement garanti est que l’on peut faire varier quotidiennement la puissance d’un réacteur entre 100% et 30% de la puissance nominale pendant les 2/3 du cycle d’irradiation, sans limitation particulière. Il me semblerait utile, pour ne pas dire nécessaire, avant d’affirmer que la modulation de grande ampleur, nécessitant par exemple des arrêts de tranche répétés, ne pose pas de problème, d’évaluer quantitativement les modulations nécessaires en fonction non seulement de la puissance renouvelable installée (aux niveaux tant français qu’européen), mais aussi du détail statistique des fluctuations induites et de la demande de stabilisation nécessaire. Cette étude, comme celle sur les moyens de stockage disponibles de façon économiquement viable, est une brique indispensable pour penser un mix énergétique qui ne soit pas une pétition de principe, s’appuyant plus sur l’idéologie, ou sur une stratégie de courtisan, que sur la science…

 

 

 

[1] Pour les alliages modernes (M5 pour Framatome et Opt ZIRLO pour W), la résistance à la corrosion a été améliorée. En revanche, la pression interne fin de vie et l’épuisement du combustible (taux de combustion) sont des facteurs limitatifs pour le combustible. Des assemblages peuvent être déchargés prématurément s’ils sont endommagés (e.g., percement par vibration usure des crayons …) mais c’est indépendant du suivi de charge

 

[2] Des essais d’endommagement par fatigue ont été réalisés à grande échelle dans les années 90s lorsqu’il a fallu justifier le suivi de charge et le suivi de réseau. Des marges conséquentes avaient été identifiées mais une extension de ces études aux problématiques liées à la modulation pourrait être utile.

Lire l’article d’Yves BRÉCHET au format pdf

Effets de la modulation sur les centrales nucléaires

Newsletter

Inscrivez-vous à notre Newsletter

Tenez-vous informé des prochains articles